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QUBO Model - Introduction 
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 The Unconstrained Quadratic Binary Optimization problem 
(QUBO) is: 

 

: tQUBO opt x Qx

 where 

 X is an n-vector of binary variables 

 Q is an n-by-n symmetric matrix of constants 
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 QUBO unifies a rich variety of combinatorial optimization 
problems.  

 QUBO has significant applications in Machine Learning  

 QUBO is important in the quantum computing area:  

• D-Wave Systems quantum annealing computers  

• IBM neuromorphic computers 

• QAOA computers 

• Fujitsu Digital Annealer 
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 The QUBO model has become a unifying framework for 
combinatorial optimization. 

 Many important optimization problems can be re-cast  as 
a QUBO model and then solved with appropriate software. 

 

 Options: 

 Many models, many solution techniques 

 One model (QUBO), one solution technique  
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Organizations and research groups actively engaged in applications  

 Google  

 Amazon  

 IBM 

 Lockheed Martin  

 Los Alamos National Laboratory  

 Oak Ridge National Laboratory  

 Lawrence Livermore National Laboratory  

 NASA Ames Research Center  

 Fujitsu 

 D-Wave 

 Many others …   
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 Quadratic Assignment Problems  

 Capital Budgeting Problems  

 Multiple Knapsack Problems  

 Task Allocation Problems (distributed computer systems)  

 Maximum Diversity Problems  

 P-Median Problems  

 Asymmetric and Symmetric Assignment Problems  

 Spin Glass Problems 
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 General Linear 0/1 Problems 

 Quadratic Knapsack Problems  

 Constraint Satisfaction Problems (CSPs) 

 Portfolio Analysis Problems 

 Set Partitioning Problems  

 Set Packing Problems  

 Warehouse Location Problems  

 Maximum Clique Problems  
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 Maximum Independent Set Problems  

 Maximum Cut Problems  

 Graph Coloring Problems  

 Number Partitioning Problems  

 Linear Ordering Problems  

 Clique Partitioning Problems 

 SAT  and Max Sat Problems 

 Clustering Problems 
 Modularity Maximization 

 Correlation Clustering 

 Other 
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 QUBO problems are NP-hard.   

 Exact solvers designed to find “optimal” solutions (CPLEX and 
Gurobi solvers) often can solve only very small problem 
instances.    

 Realistic sized problems can run for days and even weeks with 
CPLEX and Gurobi –and still fail to provide high quality solutions.   

 By contrast, modern metaheuristic methods – based on Tabu search 
and path relinking – can find high quality solutions in only seconds 
to minutes. 
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Creating QUBO Models 

The tutorial provided in the following sections that will illustrate 

the process of reformulating important optimization problems 

as QUBO models through a series of explicit examples.  

https://arxiv.org/abs/1811.11538 

https://arxiv.org/abs/1811.11538
https://arxiv.org/abs/1811.11538


 Minimize/Maximize  xQx: x binary 

For a symmetric matrix Q = (qij: i, j  N = {1, …, n})   

 where: 

   xQx = ∑(qijxixj: i, j  N) 

 

In linear + quadratic form  

= ∑(qiixi: i  N) + ∑(qijxixj: i, j  N: i ≠ j) 

6/20/2019 14 

Since binary variables 

satisfy 𝒙𝒊 = 𝒙𝒊
2 
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Minimize:  

Linear part:   

Quadratic part:   
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Matrix Form: Minimize  
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Optimal Solution: 
1 4 2 3

11, 1, 0.y x x x x      

1 2 3 4 1 2 1 3 2 3 3 4
5 3 8 6 4 8 2 10y x x x x x x x x x x x x       

1 2 3 4
5 3 8 6x x x x   

1 2 1 3 2 3 3 4
4 8 2 10x x x x x x x x  
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In the next few slides, I’ll highlight some of the computational 
experience we’ve produced on casting into QUBO formulation 

 

 Natural Formulation 

 Known penalties 

 Constructing penalties via Transformation # 1 

 Employing a change of variable 

 Using Special Penalties (e.g. Linear Ordering Problem) 
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Partition a set of numbers into two subsets such that the 
subset sums are as close to each other as possible. We 
model this problem as a QUBO instance as follows: 

Consider a set of number S= {𝑠1  𝑠2, 𝑠3, ..𝑠𝑚}.  

Let 𝑥𝑗 = 1 if 𝑠𝑗  is assigned to subset 1; 0 otherwise. Then 

the sum for subset 1 is given by, 𝑠𝑢𝑚1 =  𝑠𝑗  𝑥𝑗
𝑚
𝑗=1  and 

the sum for subset 2 is given by 𝑠𝑢𝑚2=  𝑠𝑗  
𝑚
𝑗=1  

−  𝑠𝑗  𝑥𝑗
𝑚
𝑗=1 .  The difference in the sums is then 

 diff =  𝑠𝑗  
𝑚
𝑗=1  − 2 𝑠𝑗  𝑥𝑗

𝑚
𝑗=1  = c – 2  𝑠𝑗  𝑥𝑗

𝑚
𝑗=1  
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We approach the goal of minimizing the difference by minimizing 

 

 

 

Dropping the additive and multiplicative constants, our QUBO 
optimization problem becomes: 

                           

QUBO: min y =  𝑥𝑇 Qx 
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Numerical Example: Consider the set of eight numbers 

  S = { 25, 7, 13, 31, 42, 17, 21, 10} 

 By the development above, we have 𝑐2 = 27,556 and the equivalent 
QUBO problem is min y =  𝑥𝑇 Qx with  

 

 

 

 

 

 

 

 

 Solving QUBO gives x = (0,0,0,1,1,0,0,1), yielding perfectly 
matched sums which equal 83. 

 The development employed here can be expanded to address 
other forms of the number partitioning problems as discussed in 
Alidaee, et.al. (2005)  6/20/2019 19 



Given an undirected graph G(V, E), the Max Cut problem seeks to 
partition V  into two sets such that the number of edges between the two 
sets (the cut), is as large as possible. 

We can model this problem by introducing binary variables 𝑥𝑗  = 1 if 

vertex j is in one set and 𝑥𝑗  = 0 if it is in the other set. Viewing a cut as 

severing edges joining two sets, the quantity 𝑥𝑖 + 𝑥𝑗 - 2𝑥𝑖𝑥𝑗 identifies 

whether the edge (i, j) is in the cut. 

Thus, the problem of maximizing the number of edges in the cut can be 
formulated as 

  Maximize  

 

Which is an instance of    
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y = xi + x j - 2xix j( )
i, j( )ÎE
å

QUBO :max y = xtQx



To illustrate the Max Cut problem, consider the undirected graph with 5 
vertices and 6 edges. 

 

 

 

 

 

 

Explicitly taking into account all edges in the graph gives the following 
formulation: 
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Maximize y = (x1 + x2 - 2x1x2)+ (x1 + x3 - 2x1x3)+ (x2 + x4 - 2x2x4)

+ (x3 + x4 - 2x3x4)+ (x3 + x5 - 2x3x5)+ (x4 + x5 - 2x4x5)



 

This takes the desired form QUBO =  max 𝑥𝑡𝑄𝑥 by writing the symmetric 
Q matrix as: 

 

 

 

 

 

 

Solving this QUBO model gives x =(0, 1, 1, ,0, 0).  Hence vertices 2 and 3 
are in one set and vertices 1, 4, and 5 are in the other, with a maximum 
cut value of 5 
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Q=

2 -1 -1 0 0
-1 2 0 -1 0
-1 0 3 -1 -1
0 -1 -1 3 -1
0 0 -1 -1 2

é

ë

ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú



 A penalty function is said to be a valid infeasible penalty (VIP) if it 
is zero for feasible solutions and otherwise positive.  

 

 Including quadratic VIPs in the objective function for each 
constraint in the original model yields a transformed model in the 
form of QUBO.  VIPs for several commonly encountered constraints 
are given below  
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Most problems of interest include additional constraints. Many of 
these models can be re-formulated as a QUBO model by 
introducing quadratic penalties with a positive scalar P: 
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Classical Constraint Equivalent Penalty  

x + y <=1 P(xy) 

x + y >=1 

 

P(1-x-y+xy) 

x + y =1 

 

P(1-x-y+2xy) 

 

x<=y P(x-xy) 

x = y P(x+y-2xy) 

Simple examples: Known constraint/penalty pairs 
 

1321  xxx )( 323121 xxxxxxP 
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 For certain types of constraints, equivalent quadratic penalty 
representations are known in advance 

 

 For instance, let       and       be binary variables and consider the 
constraint                           

       (1)  

 

 A quadratic infeasibility penalty that imposes the same condition on  

           and        is:              

       (2) 

 

where P is a large positive scalar. 
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 This penalty function is positive when both variables are set to one 
(i.e., when (1) is violated), and otherwise the function is equal to 
zero.  

 

 For a minimization problem then, adding the penalty function to the 
objective function is an alternative equivalent to imposing the 
constraint of (1) in the traditional manner. 

 

 Due to their importance and frequency of use, we refer to this 
special case as Transformation #2.  
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 A vertex cover is a subset of the vertices (nodes) such that 
each edge in the graph is incident to at least one vertex in 
the subset. The Minimum Vertex Cover problem seeks to 
find a cover with a minimum number of vertices in the 
subset. 

 MVC can be formulated as follows. Let 𝑥𝑗 = 1 if vertex j is 

in the cover (i.e., in the subset) and 𝑥𝑗 = 0 otherwise. Then 

this standard constrained, linear 0/1 optimization model 
is:  
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Note the constraints ensure that at least one of the endpoints of each 
edge will be in the cover and the objective function seeks to find the 
cover using the least number of vertices . 
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The constraints in the standard MVC model can be represented by a 
penalty of the form P(1-x-y+xy). Thus, an unconstrained alternative to 
the constrained model for MVC is  

 

 

 

 

where P again represents a positive scalar penalty. In turn, we can write 
this as minimize 𝑥𝑡Qx plus a constant term. 

6/20/2019 29 ECCO XXXII CONFERENCE  2019 

 

 



Numerical Example: Consider the graph  to determine a minimum 
vertex cover. For this graph with n = 6 edges and m = 5 nodes, the 
model becomes:  

 

 

 

 

 

 

 

which can be written as 
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Numerical Example: 

Arbitrarily choosing P to be equal to 8 and dropping the additive 
constant (6P = 48) gives our QUBO model with the Q matrix given by 
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Solving this QUBO model gives: at for which xTQx = −45 

 x = (0,1,1,0,1),  y = 3. 
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  In general, this class of problems is given by 

 

 

 

 

 Numerical Example: 

 

 

 

 Re-casting as QUBO via the penalties of previous Table. 

 

 

 The equivalent QUBO model depends only on the number of original 
variables, being independent of the number of constraints in the original 
problem. 
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1

1

max

1 1,...

n

j j
j

n

ij j
j

st

w x

a x for i m





 





Maximize the weighted 

total number of subsets 

such that the selected 

sets have to be pairwise 

disjoint. 

ECCO XXXII CONFERENCE  2019 

 

 



6/20/2019 33 

 This has our customary QUBO form   

 

 where the Q matrix , with P arbitrarily chosen to be 6, is given by  

 

 

 

 Solving the QUBO model gives y = 2, and x = (0,1,1,0). Note that at this 

solution, all four penalty terms are equal to zero. 

 Set packing  problems with thousands of variables and constraints have 

been efficiently reformulated and solved in Alidaee, et. al. (2008). 

QUBO :max xtQx

1 -3 -3 -3
-3 1 0 0
-3 0 1 -3
-3 0 -3 1

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
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 For Max 2-Sat, each clause consists of two literals and a clause is 
satisfied if either or both literals are true. 

  

 

 

 

 

 

 

 The QUBO approach illustrated above has been successfully used in 
Kochenberger, et. al. (2005) to solve Max 2-sat problems with 
hundreds of variables and thousands of clauses.  
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 For general constraints, however, VIPs are not known in advance 
and need to be “discovered.”  

 Consider  the general constrained problem:  

                             (3) 

      st                                     
 

 

 For a positive scalar P: 

         (4) 
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xQxx 0min

binaryxbxA ,
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ˆ
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x x Qx P Ax b Ax b

x Qx x Dx c

x Qx c

   
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   

   

  

 
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Dropping the additive constant, the equivalent unconstrained version 
of the constrained problem becomes 

        (5) 

 

Transformation #1:  The preceding steps that transform (3) and (4) 
into (5)    
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binaryxxQxQUBO ,ˆmin:
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 The set partitioning problem can be formulated as 

 

 

 

 

 

 

 Applying Transformation 1 the set partitioning problem becomes a 
QUBO problem without introducing new variables. 

 The QUBO approach to solving set partitioning problems has been 
successfully applied in Lewis, et. al. (2008) to solve large instances 
with thousands of variables and hundreds of constraints.  
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Partitioning a set of items 

into subsets so that each 

item appears in exactly 

one subset and the cost of 

the subsets chosen is 

minimized.  
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Vertex coloring problems seek to assign colors to nodes of a graph in such a 
way that adjacent nodes receive different colors. These problems can be 
modeled as satisfiability problems as follows: 

 Let 𝑥𝑖𝑗 = 1 if node I is assigned color j, and 0 otherwise. 

Since each node must be colored, we have the constraints 

 

 

for all adjacent nodes (i, j) in the graph. 

A feasible coloring, in which adjacent nodes are assigned different colors, is 
assured by imposing the constraints 

 

 

This problem, then, can be re-cast in the form of a QUBO model by using 
Transformation # 1 on the node assignment constraints and using 
Transformation # 2 on the adjacency constraints. 
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Numerical Example:  Consider the problem of finding a feasible 
coloring of the graph using K= 3 colors. Given the discussion, we see 
that the goal is to find a solution to the system:  
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                      11 12  13  21 22 23  31  32  33  41  42  43 51  52  53 
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binaryxxQxQUBO ,ˆmin:



 

 Solving this model  yields the feasible  coloring: 

 

 with all other variables equal to zero. 

 Switching back to our original variables, this solution means that 
nodes 1 and 4 get color #2, node 2 gets color # 1, and nodes 3 and 5 
get color # 3.  

 This approach to graph coloring problems has proven to be very 
effective for a wide variety of coloring instances with hundreds of 
nodes, as demonstrated in Kochenberger, et. al. (2005) and Hao, et al. 
(2010). 
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Many important problems in industry and government can be 
modeled as 0/1 linear programs with a mixture of constraint 
types. The general problem of this nature can be represented in 
matrix form by 

 

 

 

 

where slack variables are introduced as needed to convert 
inequality constraints into equalities.  Given a problem in this 
form, Transformation # 1 can be used to re-cast the problem into 
the QUBO form 
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Numerical Example: Consider the general 0/1 problem 

 

 

 

 

 

Introducing slack variables 

 

 

We can now use Transformation # 1 to reformulate our problem as a 
QUBO instance. 
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max y = 6x1 + 4x2 +8x3 +5x4 +5x5

- P(2x1 + 2x2 + 4x3 + 3x4 + 2x5 +1x6 + 2x7 -7)2

- P(1x1 + 2x2 + 2x3 +1x4 + 2x5 - 4)2

- P(3x1 + 3x2 + 2x3 + 4x4 + 4x5 -1x8 - 2x9 - 4x10 -5)2



Taking P = 10 and re-writing this in the QUBO format with an additive 
constant of - 900 and a Q matrix gives 

 

 

 

 

 

 

Solving gives the non-zero values                                     for which y =916. 

 

Note that the third constraint is loose.  Adjusting for the additive 
constant, gives an objective function value of 16. 
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526 -150 -160 -190 -180 -20 -40 30 60 120

-150 574 -180 -200 -200 -20 -40 30 60 120

-160 -180 688 -220 -200 -40 -80 20 40 80

-190 -200 -220 645 -240 -30 -60 40 80 160

-180 -200 -200 -240 605 -20 -40 40 80 160

-20 -20 -40 -30 -20 130 -20 0 0 0

-40 -40 -80 -60 -40 -20 240 0 0 0

30 30 20 40 40 0 0 -110 -20 -40

60 60 40 80 80 0 0 -20 -240 -80

120 120 80 160 160 0 0 -40 -80 -560
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  We are given n facilities and n locations along with a flow matrix denoting 
the flow of material between facilities i and j. A distance matrix specifies the 
distance between sites i and j. The optimization problem is to find an 
assignment of facilities to locations to minimize the weighted flow across the 
system.   

 The classic QAP model can be stated as: 

 

 

 

 

 

 

 

 

 Transformation # 1 can be used to convert any QAP problem into a QUBO 
instance.  

 A QUBO approach to solving QAP problems, as illustrated above, has been 
successfully applied to problems with more than 30 facilities and locations 
in Wang, et. al. (2016). 
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Numerical Example:  

Consider a small example with n = 3 facilities and 3 locations with flow  

and distance matrices respectively given as follows: 

 

 

 

 

Given the flow and distance matrices our QAP model becomes 
minimizing the following: 

  

 

s.t. 
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Converting the constraints into quadratic penalty terms 

 

 

 

 

Choosing a penalty value of P = 200, this becomes the standard QUBO 
problem with an additive constant of 1200 and the following 9-by-9 Q 
matrix: 

 

 

 

 

 

 

 

Solving QUBO gives y = - 982 at 𝑥1 =  𝑥5 = 𝑥9 = 1 and all other 
variables = 0.  Adjusting the constant to get the original objective 
equals 218. 6/20/2019 47 



For the general case with n projects, the Quadratic Knapsack 
Problem (QKP) is commonly modeled as 

 

 

subject to the budget constraint 

 

 

where 𝑥𝑗 = 1 if project j is chosen, else it is 0. 

We re-cast this into the form of a QUBO model by first converting 
the constraint into an equation and then using the ideas embedded 
in Transformation # 1.  
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Consider the QKP model with four projects: 

 

 

 

subject to the knapsack constraint: 

 

 

Introducing a slack variable: 

 

 

Including the penalty term in the objective function  
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 Choosing a penalty P = 10, and cleaning up the algebra gives the  
QUBO model with an additive constant of -2560 and the Q matrix  

 

 

 

 

 

 

 Solving QUBO gives y =  2588 at x = (1, 0, 1, 1, 0, 0). 

 Adjusting for the additive constant,  gives the value 28 for the original 
objective function. 

 The QUBO approach to QKP has proven to be successful on problems 
with several hundred variables as shown in Glover, et. al. (2002). 
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Connections with Quantum Computing and 
Machine Learning 



 

Quantum Computing QUBO Developments:  

  Significant fact: QUBO is equivalent to the famous Ising problem in 
physics. Physics approaches try to solve Ising problems with 
annealing. 

 The D-Wave quantum computer - based on quantum annealing - 
nevertheless attempts to incorporate tabu search ideas to enhance 
its effectiveness.   

 Another approach, called quantum gate (or quantum circuit) 
systems, is actively debated for its potential superiority 
over  quantum annealing (adiabatic) systems.  
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 Quantum-Bridge Analytics has emerged, a field which devoted to 
bridging the gap between classical and quantum computational 
methods and technologies.  

 National Academies of Sciences, Engineering and Medicine has 
released the Consensus Study Report titled Quantum Computing: 
Progress and Prospects in 2019: 

• “Formulating an R&D program with the aim of developing commercial 
applications for near-term quantum computing is critical to the health of 
the field “. 

• “Such a program will rest on developing “hybrid classical-quantum 
techniques,” which is the focus of Quantum-Bridge Analytics ” 

• Studies devoted to the use of Alpha-QUBO are currently underway to 
investigate the possibilities for achieving such speedup 
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http://meta-analytics.net/Home/AlphaQUBO
http://meta-analytics.net/Home/AlphaQUBO
http://meta-analytics.net/Home/AlphaQUBO


 Meta-Analytics represents the unification of metaheuristics and 
analytics, two fields of the foremost interest and practical 
importance for applications ranging from biotechnology to energy 
to logistics and financial planning.  

 An important development Meta-Analytics has come about with the 
emergence of Quantum-Bridge Analytics.  

 Exploit specific advantages unique to each computing paradigm  

 The branch of Meta-Analytics is being actively pursued with the 
creation of the Alpha-QUBO solver, whose forerunner has been 
embodied in a hybrid classical-quantum method called qbsolv, 
which has been applied in a wide range of commercial and 
academic research settings. 

 Goal: provide more effective solutions to QUBO and QUBO-related 
problems.  
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http://meta-analytics.net/Home/AlphaQUBO
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Unsupervised Machine Learning with QUBO 

 Salient form of unsupervised machine learning represented by 
clustering.  

 The QUBO clique partitioning model provides a very natural form of 
clustering.  

 CPP(clique partitioning problem) is popular in the area of machine 
learning as it offers a general model for the correlation clustering 
(CC) and the modularity maximization (MM),    Charikar et al.(2008) 
and Caeri, et al.(2013). 

 Application of QUBO to unsupervised machine learning in Glover et 
al. (2018) can be employed either together with quantum computing 
or independently.  

 Recent use of clustering with QUBO models in Samorani et al. (2018) 
gives a foundation for studying additional uses of clustering.  
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Supervised Machine Learning with QUBO:  

 Supervised Machine Learning with QUBO: -- From the physics 
perspective, Schneidman, Berry, Segev and Bialek (2006) argue that 
the Ising model (which is equivalent to the QUBO model) is useful 
for neural network analysis.   

 Consequently, the QUBO model has a natural role in statistical 
neural models of supervised machine learning.  
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Glover, Lewis and Kochenberger (2017) introduce logical tests to 
learn relationships among variables in QUBO applications  

 Achieved a 45% reduction in size for about half of the problems 

tested 

  Succeeded in fixing all the variables in 10 cases, exactly solving 

these problems.  

 Also identified implied relationships between pairs of variables to 

facilitate solving these problems.  
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Conclusions 



 A Tutorial on Formulating and Using QUBO Models 

 https://arxiv.org/abs/1811.11538 

 

 Alpha QUBO 

 http://meta-analytics.net/Home/AlphaQUBO 
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 Special thanks to Dr. Yu Du who assisted in putting the slides 
together. 

 This tutorial was influenced by our collaborations on many 
papers over recent years with several colleagues to whom we 
owe a major debt of gratitude. These key co-workers, listed in 
alphabetical order, are: Bahram Alidaee, Dick Barr, Andy 
Badgett, Rajesh Chawla, Yu Du, Jin-Kao Hao, Mark Lewis, Karen 
Lewis, Zhipeng Lu, Abraham Punnen, Cesar Rego, Yang Wang, 
Haibo Wang and Qinghua Wu, etc. 

 Other collaborators may be found listed as our coauthors on 
our home pages.  
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